If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x-56x^2=0
a = -56; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-56)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-56}=\frac{-80}{-112} =5/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-56}=\frac{0}{-112} =0 $
| q-107=-q-9 | | 9(a-2)=14 | | 6(x−3)−5=43 | | -d+4=d+100 | | d+83=-d+7 | | 4x2.5=(2x-3)7 | | x+1.84=3.41 | | 4xx2.5=(2x-30)x7 | | 20+8h=5h-4 | | 10m-6-10m=m+5 | | -17f=-16f-17 | | 8(1+5t)=0 | | 3x–12=18–2x | | 6n^2-4n-42=0 | | 1=v/12 | | -17-8b=9-6b | | -22=-10=2m | | 6q=-19+7q | | -9+7f=9+f+8f | | -4s=-3s+8 | | -19+11r=-7r+13+16r | | -4s=-3+8 | | n^2+3n-38=0 | | -1=2-3x8 | | 2+10r=10+6r | | -6n+10=-8n+10 | | x=2(3)2*40 | | x+103+33=180 | | x+103+33=80 | | -9z=8-7z | | 4n2=20n | | 57=15x+12 |